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Outline

-

1. Variational Image Decomposition.

2. Motivation.
# Mumford-Shah and Rudin-Osher-Fatemi models.
# Y. Meyer modeling oscillatory components with

G =div(L>), F =div(BMO), E = B .

#® \Vese-Osher’s approximation of Meyer G-model.

® Osher-Sole-Vese model with H~1.
3. Modeling Oscillatory components with div(BMO).
4. Modeling oscillatory components with Besov spaces.
5. Numerical results.
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Publications

o N

This presentation consists of materials from these papers:

1. T. Le and L. Vese, Image decomposition using total variation
and div(bmo), Multiscale Modeling and Simulation, SIAM
Interdisciplinary Journal, vol.4, num. 2, pp. 390-423,
June 2005.

2. J. Garnett, T. Le, and L. Vese, Image decompositions using
bounded variation and homogeneous Besov spaces, UCLA CAM

Report 05-57, Oct. 2005.
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Variational image decomposition

o N

Let f be periodic with the fundamental domain

() = [—3,3]> C R% Denote L? for L?(Q), etc.

A variational method for decomposing f into « + v,
#® 1 IS plecewise smooth,

#® v Is osclillatory or noise,

can be given by an energy minimization problem

inf {K(u,v) = Fi(u) + A\F3(v) : f =u+ v}, where
(u,v)EX1 X X2

& Fi, Fy, > 0 are functionals on spaces of functions or
distributions Xy, X, respectively. A > 0.

# A good model for K is given by a choice of X; and X5
~ sothat Fi(u) << Fy(u), and Fi(v) >> Fy(v). o
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Mumford-Shah (1989)
B -

inf { / Vul2dx + aH () | + M||v]|4s, fu—HJ} .
(u,v)ESBV x L? Q\J.,

® fc L® c L?issplitinto v € SBV, a piecewise-smooth
function with its discontinuity set J,, composed of a

union of curves, and v = f — u € L? representing noise
or texture.

#® H! denotes the 1-dimensional Hausdorff measure,
# o, )\ > 0 are tuning parameters.

With the above notations, the first two terms compose F(u)
L(non-convex), while the third term makes Fs(v). J
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Rudin-Osher-Fatemi (1992)

inf {/\Vu| de + N|v||5., f= u+v},

(u,v)EBV x L?
® [ |Vu|dz denotes |u|gy, A > 0 is a tuning parameter.

® f e L?is splitinto v € BV, a piecewise-smooth function
and v = f — u € L? representing noise or texture.

With the above notation, Fi(u) = |u|gy, and Fz(v) = ||[v]|7..

e Loss of Intensity: Let f = yp be the characteristic function
of a disk D centered at 0 of radius R. The minimizer (u, v) of
ROF Is given by:

1 1

o |
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ROF (cont.)
-

e Replacing ||v]|%, with ||v||,: was proposed by Cheon,
Paranjpye, Vese and Osher as a Summer project, and
further analysis by Chan and Esedoglu, Esedoglu and
Vixie, Allard, among others.

Remark: Oscillatory components do not have small norms in
L?or L.

e To overcome these drawbacks, we have to relax the
conditions on v or v = f —u. One way IS to use a
non-convex regularization on u (like in Mumford-Shah
model), that is weaker than BV. Another way is to use

weaker norms than the L? norm.

e Here we choose to keep BV, and consider weaker norms

than L2. J

Modeling Oscillatory components with Besov Spaces — p.7/42



Meyer models (2001)
-

e Mumford-Gidas (2001) also shows that natural images
are drawn from probabillity distributions supported by
generalized functions.

In 2001, Y. Meyer proposed (weaker norms)

inf {\U\BVHHUHXW f:u+v}.
(U,U)EBVXXQ

Here X5 Is either G, F, or E.
e The space G = div(L®°) consists of distributions v which
can be written as

v =div(7), §= (g1,92) € (L>)?, with

e =t {7+ (2

v =div(g), g € (LOO)2} . J
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Meyer (cont.)

o N

e The space F' = div(BMO) consists of distributions v
which can be written as

v=div(7), §=(g1,¢2) € (BMO)*, with

|vllF = inf {{lg1llBaro + llgzllBaro = v = div(@), § € (BMO)?}.
We say that f belongs to BMO, if

1
1l Bao = sup @/Q\f — fol < 0.

QC)

where () C Q2 Is a square (with sides parallel with the axis).

Here fo = |Q|™! fQ f(x,y) denotes the mean value of f over

Lthe sguare (. J
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Meyer (cont.)

o .

e We say a generalized function v belongs to the space E |
It can be written as v = Ag, such that

sup lg(- +y) —29(.) + 9(. —y)|lL= e

y[>0 Y

# Both G =div(L*®) and F' = div(BMO) (as defined
previously) consist of first order derivatives of vector
fields in L and BMO, respectively.

#® [ (as defined above) consists of second order
derivatives of functions satisfying the Zygmund
condition.

® NR:BVCIL*CGCFCE.
L # Difficulty: How to solve these models in practice. J
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Approximating Meyer G-model
-

Vese-Osher (2003): model oscillatory components as first
order derivatives of vector fields in LP, for 1 < p < .

)

® e L?is decomposed into « + v + r, such that v € BV,
v =div(§) e div(L?),and r = f —u — v € L? is a residual
which is negligible numerically for large L.

nt {ruer ullf = u— div@)|2s + A Hw% g

°

As 11, p — oo, this model approaches Meyer GG-model.

# Other motivating work on the GG space includes Aujol et
al, Aubert and Aujol, S. Osher and O. Scherzer, among

others.
L

Modeling Oscillatory components with Besov Spaces — p.11/42




Osher-Sole-Vese (2003)
-

f # In 2003, S. Osher, A. Sole, and L. Vese model
oscillatory components as v = Ag, where ¢ € H'. l.e.

UV & H‘l.

iul”lg {‘U‘BV + A HV(A_lv)HiQ , f=u—+ U} :

# L. Lieuand L. Vese (2005) recently consider modeling
oscillatory components as v € H*, s € R™,

2
LI}E{\U\BV [ Jasigerae)| de g - u+v}.

o |
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M odeling Oscillatory componentswith div(BMO)

o N

# We consider a strictly convex variational problem:

inf {Fi(u.9) = ulpy +plf —u—div(g)]};
+ M llg1llByo + llga | saro) |

# A more isotropic problem: § =V - g, 1.e. v = Ag,
inf { Fo(u,9) = [uly + ullf —u = Agl3:
+ Alllgallzo + llgyllsaro) §

Here, f = u+ v+ r, where r € L? is a residual. As y — oo,
Lthese models approach Meyer F-model. J
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Minimizing F(u, )

Fi(u, §) = |ulpy + pllf —u — div(d)|2

+ A [HngBMO + HQZHBMO}

:/ V| +u/ f —u— 0zg1 — Oygal”

‘Bl‘/’gl_ng1‘H(¢l ‘32’/!92—9232117(@)}

® ¢, Is the level set of B;, H Is the heaviside function, and

H
< 9i,B; — I?QQH L)

#® B; maximizes ||g;||ao-

|
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Minimizing F;i(u, g) (cont.)

o N

Keeping B; and Bs fixed for one iteration, and minimizing
Fi(u, g) with respect to its variables, we obtain

. Vu
—div (W> — 2M(f — U — 001 — 33;92) = 0,

200 (f —u — Opg1 — Oygo)

ANH — 1 —
L AH(¢1) [ 91— 1B 91 — 91.B, H(¢1)] 0,
Bil g =98l |Bil Jo gt — 91,8
Q,Uay(f — U — 0zg1 — ang)
ANH — 1 —
L AH(¢2) [ 92— 92.B, 92 — 92,8, H(@)] o,
B2l |92 —92.8,| B2l Jo |92 — 92,8,

o |
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Minimizing F»(u, g)

f2<u,g>=/m| ﬂt/Q!f—u—Ag!Q

1
‘|')\—/ xr  Yx 1He
‘Bl’ ‘g g,B‘ (¢1)

+ 1 [ 90—t Helon)

H. is a smooth approximation of the Heaviside function
H, and

the unknown sets By and B, maximize the BM O norms
of g1 = g, and of g» = g,

®; 1S a level set of B,. J
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Minimizing F>(u, g) (cont.)
. o -

For fixed B; and B, (at one iteration), minimizing F2(u, g)
w.r.t. « and g, we obtain the Euler-Lagrange equations:

Vu
—div| — | —2 —u— A
o () 20 =0

) =
A T x,B1
‘Q“A“‘“‘Ag)‘ﬁlﬁx \i ii\HW)]

)\ 9r — 9x. By
—_H - H .
*\an< PR W)a (1)

A 9y — Gy,B- )
— —— |0 —H,
‘32’ [ ’ (’9y — gy,Ba‘ (@)
A 9y — Gy,Bs )
+ : He €b2 a HE €b2 — 07
L ‘32‘2 ( ‘gy _9%32‘ ( ) ¢ ( ) J
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Numerical results and comparisons

-

ROF v e L? wv=div(j) v=Ag

Remark: The case v = Ag IS more isotropic, and better cap-

|
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Homogeneous Besov spaces

-

Consider the Poisson and the Gaussian kernels,

P(z) = (e 2™V () = e, t

(t2 i m ) (n+1)/2°
7T|.CC|2

Wi(z) = (e T (3) = qnt /2 "o

Foreach g € I?. Letw(x,t) = P, x g(x), and
h(xz,t) = W, % g(x). We have

.p %Tgv — —Aw (the wave equation).

» 9 = Ah (the heat equation).

.

Modeling Oscillatory components

with Besov Spaces

-

|
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-

leta e R, kkmeNgsSt. k>aandm > a/2,1 <p<oo. We

Besov spaces (cont.)

say g € BY,, if
O~ P
_ o k—a t
ol = ( [t |5 +o
([ e
ot™
( O P
k—a t
e —supt *
lollgg,. = sup £ | G+ g
A sup <(tm_0‘/2 Wi
t>0 ot™

.

Lp

* g

-

1
q@ /q
t

< dt

Ip

* g

1/q
7) < 0, ([ < Q.

Lp

\

Vo

/

}<oo, g = oQ.
Lp

|
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.

Some properties of B

e Denote I,u = (—A)%/2(v) = ((27]€])*0(€))", We have
Is: By, — B, ., isometrically (injectively).

e Define 75f(x) = f(dx), 6 > 0. We have
175 £l porey = 61| fll Lo ey, @nd
175/ gy gy =6 » "I fll o mnys TOF @ <0, 1< p g < oo,
e The following embedding holds,

S oo
Bp7q1 C Bp7q2’

If either ag < a3, 0ra; =asand 1 < ¢q¢; < g2 < . J
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Modeling oscillatory components with homogeneous Besov spaces

o N

e Meyer E-model corresponds to modeling
uw€ BV, andv = Ay, g€ B, . l.e.ve B

e (Joint work with J. Garnett and L. Vese) We consider
decomposing f = u + v, such that

u € BV, andv:AgEBO‘_2,gEB§iOO,O<Oz<2,1§p§oo,

P,
with the minimization problems

> infy g {Tu(u.9) = fuloy + S —u— Al + Mallg, )

o vt {0) = ulpy + NS~

Lo Aujol & Chambolle: Meyer E-model (wavelets). J
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Minimizing J,, p < o0

-

Ta(u. ) = ulpy + u||f —u—Aglzz + Allgl 3, .
/\WHM/\f—u—Ag\2+A§ugHKf‘*gHLp,
>

2—a &P, 1—a/2 OW,
where K = 2~ %5t or Kft =1 /200,
In practice, we consider only a discrete set

{t;=257": 7=09,i=1,..,N=150}.

These t;’s are chosen so that discretely P, (z) Is a constant

|
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Algorithm
- -

# Given an initial guess (ug, go)-

» Compute tp = argmaX,ce;, o1 1K * goll 1o

® SUuppose (un, gn,ty) IS known. Compute (w11, gne1) Via

8ja Vu
(au =>7 0=-V- (,WJ = 2u(f —u— Ag)

NE
(ég =>7 0=—2uA(f —u—Ag)+

YR e S (R Y

#® Suppose ¢, = t;,. Compute
B tny1 = ArgMaX,cry, 4 iy 1K * o] o CONtINUE. ..

|
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Minimizing J,, p = o<

-

Tau, g) = |ulpy + p||f —u— Agl[7a + Mgl g

K*xg,h
/\Vu\+u/\f—u—Ag\2+)\ sup K x g >
t>0,heL? Hh”Ll

e Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

_ (K2 o+ gu. )

hy, = argmax; . Via
Rl

Kexg (K%xg,h) h

\hlle A2 |A] |
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Minimizing 7., p < o<

Je(u) = lulpy + Allf —u

Soe—2
proo

Vau| + Asup | H" * (f —u)llze,
Q t>0

where H® = t>=°P, or HY = t!=/2W,.
Suppose (uy, t,) iIs known. Compute (un,11,t,41) Via

aje_ . Vu
(50 ) o= ()

MH # (f — u) || UHY x ([HY « (f —w)P2HY * (f — ).

o tn—l—l — argmaxte{tk_l,tk:fn,tkﬂ} HHI? * (f o u”"‘l)HLP :

|
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Minimizing J., p = oo

JTe(u) = |ulpy + Al f —ull a2

/‘vu‘_|_)\ sup <Ht *(f—U),h>
£>0,hel! b=

e Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

] (H = (f = un), h)

hy, = argmaxy . , Via
Al

K« (f—u) (K=(f—wu)h)h
17| |A]I7: |h|

hy =

|
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Barbara
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Using J, withu € BV, v € Bigf
=

F—u+100

Parameters: a =15,p=1,u=1,and A = le — 04.

L |
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Using J, with w € BV, v € By .,
-

F—u+100

Parameters.: « = 1.0, p=1, p =1, and A = 3e — 03.

L |
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Using J, withu € BV, v & Biéf

F—u+100

Parameters: « =05, p=1, u=1,and XA = 0.5.

|



Using J, withu € BV, v € B

F—u+100

Parameters. o« =1, p = oo, u = 10, and A = 1.

L |
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Using J. withu € BV, v € By L,
-

F—u+100

Parameters: a =1, p =1, A = 1500.

L |
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Coffee beans
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Using J. withu € BV, v € By L,
-

F—u+100

Parameters: a =1, p =1, A = 1500.

| |
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Coffee beanswith additive Gaussian noise

o |
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Using J. withu € BV, v € By L,
-

F—u+100

Parameters: a =1, p =1, A = 2500.

| |
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Stair-casing effects of total variation

o N

The regularization term [ |Vu| dx creates stair-casing
effects in » In regions where f is very oscillatory.
To overcome this, One could replace | |Vu| dz with

[ ¢(Vu) dz, where
® ©(z) > 0is convex (strictly convex near 0),

# |lower semicontinuous, increasing and has linear growth
at oo.

Related work:

#® G. Aubert and L. Vese.

# P Schultz, E. Bollt, R. Chartrand, s. Esedoglu, K. Vixie.
#® S. Levine.

L # among others. J
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Barbarawith Gaussian noise

'

II.-'.-'." ,r_“ i
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Using J, with v € B;
-

F—u+100

® o(Vu) =B+ /[Vul2 + 3, 8 = V10,
® ao=1,p=2,u=10,and X = 0.01. J
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Conclusion

o N

# In these models, inteads of imposing ||v||z» on the
oscillatory component v, we impose || K; * v||;» for some
t > 0, where K; Is a smoothing kernel.

#® Use p = 1 for texture (repeated patterns)
decomposition. M. Green also shows that texture-like
natural images when being convolved with a kernel of
zero mean has a laplacian probability distribution.

#® Use p = o for cases where one wants to capture more
oscillations including non repeated patterns.

o |
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Thank You!
| -

This presentation consists of materials from these papers:

1. T. Le and L. Vese, Image decomposition using total variation
and div(bmo), Multiscale Modeling and Simulation, SIAM
Interdisciplinary Journal, vol.4, num. 2, pp. 390-423,
June 2005.

2. J. Garnett, T. Le, and L. Vese, Image decompositions using
bounded variation and homogeneous Besov spaces, UCLA CAM

Report 05-57, Oct. 2005.
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